> Skip repeated content

A Simple EMG Classification Describing Quality of Donor Nerves Can Predict Outcome of Nerve Transfer Surgery

New York—March 13, 2014

A study by researchers at Hospital for Special Surgery (HSS) finds that electromyography (EMG) testing to determine the quality of donor nerves can improve the outcome of nerve transfer surgery to restore function in patients with a brachial plexus injury. EMG is a sophisticated test used to objectively measure muscle and nerve function.

The study, titled, “Does Pre-operative Donor Nerve Electromyography Predict Nerve Transfer Outcomes?,” was presented at the annual meeting of the American Academy of Orthopaedic Surgeons on March 13 in New Orleans.

“Our study found that pre-operative EMG evaluation should be considered a critical component of the donor nerve selection process when planning brachial plexus nerve transfer reconstruction,” said Scott W. Wolfe, MD, senior investigator and Director of the Center for Brachial Plexus and Traumatic Nerve Injury at Hospital for Special Surgery in New York City.

The brachial plexus is a network of nerves that extends from the spinal cord in the neck, under the collarbone and down the arm. These nerves control the hand, wrist, elbow and shoulder. Injury to the brachial plexus can be devastating, and the most common cause is a serious accident or sports injury. Nerve reconstruction is considered when the nerves are so severely damaged they cannot recover on their own. These complex operations can take up to 12 hours.

One way surgeons can reconstruct nerves is by performing a nerve transfer to restore function.

They carefully dissect out portions, or fascicles, of nearby functioning nerves (called “donor nerves”) and transfer these fascicles to the injured nerves to restore electrical connectivity and enable nerve regeneration to the paralyzed muscle. “A nerve transfer takes a working nerve from one muscle and transfers part of that nerve to the injured, non-working nerve or another muscle, so the two muscles can share the nerve and regain function,” Dr. Wolfe explained.

Electromyography is often used in the pre-operative assessment of brachial plexus injuries to estimate the degree of damage. However, the ability to predict surgical outcomes using pre-operative EMG to test donor nerves had not been previously evaluated. Researchers hypothesized that the health of the donor nerve and corresponding muscle, as assessed by EMG, could predict the outcome of nerve transfer surgery.

A retrospective review was conducted to investigate outcomes of nerve transfers for elbow flexion (ability to bend one’s elbow) and shoulder abduction (ability to lift arm away from the body). Muscle strength was graded both pre-operatively and at least one-year after surgery. Pre-operative EMG results for donor nerves were classified on a scale that rated their level of function and then compared with the patient’s muscle strength and range of motion after surgery.

Forty nerve transfers were identified. Twenty-seven were performed for elbow flexion and 13 for shoulder abduction. Overall, the 29 transfers using a normal donor nerve showed significantly greater post-operative improvement in muscle strength and function than the 11 transfers with the less robust donor nerve, as classified by EMG.

In the shoulder patients, the use of normal donor nerves resulted in greater strength and active motion compared to less robust donor nerves. In the elbow cohort, double nerve transfers with two normal donor nerves demonstrated improved strength compared to double nerve transfers when one of the donor nerves was affected by the injury.

Joseph Feinberg, MD, physiatrist-in-chief and co-medical director of the Brachial Plexus Center at HSS, has developed a system to classify potential donor nerves according to four levels of functioning: normal, moderately limited function, very limited function and no function.

“Interestingly, we found that some of the donor nerves that were damaged and had some functional limitations were still healthy enough to do their job after the nerve transfer operation,” Dr. Feinberg said. “On the flip side, if electromyography shows that a potential donor nerve is not at all functional, the surgeon may want to consider a different nerve donor, or potentially another solution such as nerve grafting or muscle transfer.”

“Our findings demonstrate that a semi-quantitative EMG classification describing the quality of donor nerves can predict outcome as measured by post-operative muscle strength and range of motion,” said Dr. Wolfe. “Despite the small numbers studied, we observed significantly greater gains in strength and range of motion in the normal donor nerve group as compared to the less robust donor nerves. EMG evaluation has value as a confirmatory component of the donor nerve selection process when planning brachial plexus surgery.”

 

About HSS | Hospital for Special Surgery
HSS is the world’s leading academic medical center focused on musculoskeletal health. At its core is Hospital for Special Surgery, nationally ranked No. 1 in orthopedics (for the ninth consecutive year) and No. 3 in rheumatology by U.S.News & World Report (2018-2019). Founded in 1863, the Hospital has one of the lowest infection rates in the country and was the first in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center four consecutive times. The global standard total knee replacement was developed at HSS in 1969. An affiliate of Weill Cornell Medical College, HSS has a main campus in New York City and facilities in New Jersey, Connecticut and in the Long Island and Westchester County regions of New York State. In 2017 HSS provided care to 135,000 patients and performed more than 32,000 surgical procedures. People from all 50 U.S. states and 80 countries travelled to receive care at HSS. In addition to patient care, HSS leads the field in research, innovation and education. The HSS Research Institute comprises 20 laboratories and 300 staff members focused on leading the advancement of musculoskeletal health through prevention of degeneration, tissue repair and tissue regeneration. The HSS Global Innovation Institute was formed in 2016 to realize the potential of new drugs, therapeutics and devices. The culture of innovation is accelerating at HSS as 130 new idea submissions were made to the Global Innovation Institute in 2017 (almost 3x the submissions in 2015). The HSS Education Institute is the world’s leading provider of education on the topic on musculoskeletal health, with its online learning platform offering more than 600 courses to more than 21,000 medical professional members worldwide. Through HSS Global Ventures, the institution is collaborating with medical centers and other organizations to advance the quality and value of musculoskeletal care and to make world-class HSS care more widely accessible nationally and internationally.

 

Need Help Finding a Physician?

Call us toll-free at:
+1.877.606.1555

Conditions & Treatments

adult child
Select A Body Part
Conditions: Adult head Conditions: Adult spine Conditions: Adult shoulder Conditions: Adult elbow Conditions: Adult hand Conditions: Adult hip Conditions: Adult knee Conditions: Adult ankle Conditions: Adult head Conditions: Adult full body Conditions: Child spine Conditions: Child elbow Conditions: Child hip Conditions: Child hand Conditions: Child knee Conditions: Child ankle Conditions: Child full body


Conditions A-Z
A B C D E F G H I
J K L M N O P Q R
S T U V W X Y Z
SEE ALL

Media Contacts

Tracy Hickenbottom
Monique Irons
Sherry Randolph

212.606.1197
mediarelations@hss.edu

Social Media Contacts