New York, NY—February 15, 2016
When a child needs repeated x-rays, exposure to radiation is always a concern for parents. A new study at Hospital for Special Surgery (HSS) finds that a relatively new imaging system known as EOS, which provides less radiation exposure, performed as well as conventional CT scans in assessing limb length.
A difference in leg length is a common condition treated by orthopedic surgeons. A child may be born with it, or it may be the result of infection, an injury, or related to another disease.
"Many children with a limb length discrepancy require frequent imaging tests to monitor growth and alignment, to plan for future treatments, and to determine the effectiveness of treatments rendered," said Emily R. Dodwell, MD, MPH, FRCSC, principal investigator of the study, which was published in the January issue of the Journal of Pediatric Orthopaedics. "Accurate and reliable measurements are essential to recommend and conduct appropriate surgical interventions at the optimal time."
Dr. Dodwell, a pediatric orthopedic surgeon at HSS, noted that when choosing an imaging modality to assess injury, deformity, or alignment, clinicians must balance the need for accurate measurements with the need to minimize radiation. This concept, known as ALARA (as low as reasonably achievable), is particularly important in children who may be as much as 10 times more sensitive to radiation than adults.
"Computed tomography (CT) or conventional scanograms are the current gold standard for measuring limb-length discrepancy. However, the use of low-dose EOS is being used more frequently in pediatric orthopedics," Dr. Dodwell said. "The goal of our study was to determine the accuracy and reliability of EOS compared with CT scanogram for measurement of leg length and the direct measure of growth about the growth plate," Dr. Dodwell said.
Previous studies have shown that the radiation dose from EOS is considerably lower than standard X-rays or CT scans.
For their study, investigators implanted orthopedic markers in the form of tiny tantalum beads into a bone model. (The study did not involve actual patients).
Tantalum beads, which can be seen on X-rays and are biocompatible, have been used for several decades after joint replacement surgery to assess implant position and wear.
Investigators obtained images using CT scanogram and the EOS system. Measurements of total length of the bone model and distance between beaded pairs were recorded. The results indicated that EOS measurements showed near-perfect correlation to those of the CT scanogram.
The study authors also noted that with EOS, a patient could be in a standing, weight-bearing position, allowing for better assessment of limb alignment compared to CT in which the patient is lying down.
"The greatest benefit of using these tantalum markers with EOS may be in monitoring growth following injury or surgery to the growth plate," Dr. Dodwell said. "Further investigations are necessary to determine whether this measurement technique will be of significant clinical utility."
About HSS | Hospital for Special Surgery
HSS is the world’s leading academic medical center focused on musculoskeletal health. At its core is Hospital for Special Surgery, nationally ranked No. 1 in orthopedics for 14 years in a row and No. 2 in rheumatology by U.S.News & World Report (2023-2024). Founded in 1863, the Hospital has one of the lowest infection rates in the country and was the first in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center four consecutive times. The global standard total knee replacement was developed at HSS in 1969. An affiliate of Weill Cornell Medical College, HSS has a main campus in New York City and facilities in New Jersey, Connecticut and in the Long Island and Westchester County regions of New York State. In addition, HSS opened a new facility in Florida in early 2020. In 2019, HSS provided care to 151,000 patients and performed more than 35,000 surgical procedures, and people from all 50 U.S. states and 89 countries travelled to receive care at HSS. In addition to patient care, HSS leads the field in research, innovation and education. The HSS Research Institute comprises 20 translational research laboratories, 33 scientists, 10 clinician-scientists, 55 clinical investigators and 245 scientific support staff that drive the HSS research enterprise in the musculoskeletal “ecosystem,” neurology, pain management and rheumatic diseases. The HSS Innovation Institute was formed in 2016 to realize the potential of new drugs, therapeutics and devices. The HSS Education Institute is the world’s leading provider of education on musculoskeletal health, with its online learning platform offering more than 300 courses to more than 30,000 medical professional members worldwide. Through HSS Global Ventures, the institution is collaborating with medical centers and other organizations to advance the quality and value of musculoskeletal care and to make world-class HSS care more widely accessible nationally and internationally.
212.606.1197
mediarelations@hss.edu