Bone Tumor Reconstruction With the Ilizarov Method

THOMAS H. MCCOY JR., MD,1 HAN JO KIM, MD,1 MICHAEL B. CROSS, MD,1 AUSTIN T. FRAGOMEN, MD,1 JOHN H. HEALEY, MD,2 EDWARD A. ATHANASIAN, MD,2 AND S. ROBERT ROZBRUCH, MD1*

1Limb Lengthening and Complex Reconstruction Service, Hospital for Special Surgery, New York, New York
2Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York

Background and Objectives: Patients with musculoskeletal tumors can face large bone deficiency, deformity, and nonunion. Distraction osteogenesis via the Ilizarov method may be useful for reconstruction of these deficiencies allowing limb preservation and optimizing function.

Methods: We reviewed 20 patients with a range of musculoskeletal tumors necessitating surgical treatment. The group included 9 females and 11 males with a mean age of 22.6 (8–58) years at a mean follow up of 81.7 (26–131) months. The mean bone deficiency was 7.9 (1.2–18.0) cm.

Results: The mean lengthening achieved was 7.1 (3.5–18.0) cm over an EFI of 33.5 (range, 9.5–58.3) days/cm. This treatment resulted in 10 excellent and 3 good ASAMI bone scores, 10 excellent and 3 good ASAMI function scores, a mean lower extremity MSTS score of 93% and a mean upper extremity MSTS score of 87%. Treatment resulted in 2 complications, 18 obstacles, and 6 problems.

Conclusion: The Ilizarov method is an effective technique for limb reconstruction of bone tumors, although extended time in external fixation is required. Since no one in this group received simultaneous chemotherapy or radiotherapy, we cannot comment on use of the Ilizarov method with these treatments. Further use and clinical follow-up is warranted.

KEY WORDS: Ilizarov method; limb salvage; limb reconstruction; limb length discrepancy; bone tumor

INTRODUCTION

Malignant and benign bone tumors can lead to bony defects, deformity and limb length discrepancy either primarily or as a result of surgical resection. The orthopedic oncologist is faced with the challenge of both the optimal treatment of the tumor and the subsequent bony reconstruction. Bone defects following tumor resection are often treated with vascularized fibula grafts, prosthesis, and/or allograft reconstruction [1–5]. Distraction osteogenesis offers an additional therapeutic; however, comparatively little is written about this method [5–8].

The purpose of this study is to assess the safety and efficacy of limb reconstruction using distraction osteogenesis and the Ilizarov method to correct limb length discrepancies and deformities arising either directly from bone tumors or secondarily from the treatment of bone tumors. We have used this method to restore function in patients with bony tumors in a wide variety of ways, including: primary reconstruction through lengthening or bone transport following resection of malignant bone tumors; lengthening and/or deformity correction for growth arrest caused by benign bone tumors; secondary reconstruction after failure of other primary reconstruction modalities that resulted in nonunion or deformity. As such we hypothesize that formal review of our experience will show that the Ilizarov method can be used safely in our patient population while yielding good to excellent functional results.

MATERIALS AND METHODS

After receiving approval from the Institutional Review Board we performed a retrospective review of patients from 2002 to 2011 with function limiting deformities and bone loss related to musculoskeletal oncologic conditions and resultant treatment (Tables I and II). Twenty patients were identified. Patient information including demographics, clinical course, location and magnitude of deformity, surgical procedure and time to healing was collected. There were 11 females and 9 males with a mean age of 22.6 years old (range, 8–58) with a mean follow-up of 81.7 months (range, 26–131 months). The primary diagnosis leading to resection included a range of malignant and benign bone lesions. Patients were separated into those with malignant and benign bone tumors for the sake of pathological classification; however, with respect to bony reconstruction, patients were divided into those with bone length deficiency versus those with angular deformities. Length deficiency patients required bone lengthening for LLD and/or bone defects. Patients were classified as angular deformities if they required <2.5 cm of lengthening as defined by the Association for the Study and Application of the Method of Ilizarov (ASAMI) criteria [9]. The ASAMI criteria were used to subdivide the group allowing for more meaningful comparison of the bone deformity following resection which dictated treatment to a greater extent than did the primary diagnosis necessitating resection. Importantly, none of the patients in this study received chemotherapy or radiotherapy, as all were assumed to have undergone curative resections without risk of recurrence. At last follow-up, none of the patients had recurrent disease.

For the limb lengthening patients, External Fixator Index (EFI) in days wearing external fixation per 1 cm of lengthening was used as an objective measurements of time in the frame. EFI does not accurately capture the nature of an angular deformity correction and thus it was not calculated for those in the angular deformity group.

*Correspondence to: S. Robert Rozbruch, MD, Hospital for Special Surgery, 535 East 70th St, New York, NY 10021. Fax: (212) 774-2744. E-mail: rozbruchsr@hss.edu

Received 10 January 2012; Accepted 18 June 2012
DOI 10.1002/jso.23217
Published online in Wiley Online Library (wileyonlinelibrary.com).
All patients were followed in the office with serial X-rays. Final clinical outcomes in all patients were assessed according to the Musculoskeletal Tumor Society (MSTS) score [10]. The MSTS Score uses a 0–5 grading system for each of six subscales: pain, function and emotional acceptance in both upper and lower extremities; plus supports, walking and gait for lower extremities; or, hand position, dexterity and lifting ability for upper extremities. Patients undergoing lower extremity correction (15/20) were also evaluated according to the ASAMI classification [9]. In the ASAMI classification, the bone result is based on four criteria: union, infection, deformity, and leg length discrepancy. An excellent result is defined as union without infection, deformity <7° and a leg length discrepancy <2.5 cm. A good result is defined as union plus any 2 of the last 3 features of excellent. A fair result was union plus any 1 of the 3 features. A poor result is defined as nonunion, refracture or 0 of 3 features of excellent. The ASAMI functional result is based on five criteria: presence of a limp, stiffness of the knee or the ankle, pain, soft-tissue sympathetic dysfunction, and the ability to perform previous activities of daily living (ADL). An excellent result implies a fully active individual; good and fair results indicated progressively lesser degrees of activity/mobility. Delayed union was defined as a healing time of more than 6 months. Bony union was defined by the presence of mature bridging callus across three of four visible cortices on anteroposterior and lateral radiographs and painless full weight bearing.

The Ilizarov method was used for both primary and secondary reconstructions. Primary reconstructions included bone transport after tumor resection as well as lengthening and deformity correction. Secondary reconstruction included nonunion repair, lengthening, deformity correction and bone transport procedures after previous reconstructions with allograft or free fibula transfers.

Adverse events were noted and classified as problems, obstacles, or true complications in the method previously described by Paley [11]. Problems are those postoperative issues that required no operative intervention to resolve (i.e., superficial pin site infections). Obstacles were those issues which required operative intervention, but which then were no longer issues after operative intervention (i.e., contracture release). True complications were those which occurred intra-operatively or those which did not resolve despite operative intervention.

RESULTS

Correction of Limb Length Discrepancy and Bone Defects

The bone lengthening group (deficit >2.5 cm) was composed of 22 surgeries performed on 18 patients. The mean bone deficit in this group was 8.25 (3.5–18.0) cm. The mean time in the frame was 223.9 (range, 76–467) days. The mean external fixation index (EFI) across all length corrections was 33.5 (range, 9.5–58.3) days/cm in the 21 surgeries using external fixation (one surgery used an expandable intramedullary rod). The EFI for bone transport was 39.7 (range, 22.5–58.3) days/cm while that for lengthening was 31.5 (range, 9.5–43.4) days/cm. The mean lengthening achieved was 7.1 (range, 3.5–18.0) cm resulting in a mean residual discrepancy of 0.85 (range, 0–6) cm. Treatment resulted in 10 excellent and 3 good ASAMI bone scores and 10 excellent and 3 good ASAMI function scores.

Correction of Isolated Angular Deformities

There were 10 surgeries performed on 8 patients with the intention to correct angular deformities but not lengthen. The average net multipliational deformity (sum of angular deformity in coronal, sagittal, and axial planes) was 49.6° (range, 25–66). The average time in frame needed for angular correction was 95.6 (range, 28–149) days. Treatment resulted in 3 excellent and 4 good ASAMI bone scores and 5 excellent and 2 good ASAMI function scores.

Aggregation of Cases

Outcomes were evaluated according to modified ASAMI classification for the 15 patients undergoing lower extremity correction. The bone results were 11 excellent and 4 good. The functional results were 11 excellent and 4 good. The MSTS score for the 6 patients undergoing upper extremity corrections was 87% (70–100). The MSTS score for the 15 patients undergoing lower extremity correction was 93% (87–100). (Table II) Adverse events encountered during treatment period were 2 complications (radial nerve palsy with significant but incomplete resolution, premature consolidation), 18 obstacles (recurrent deformity in children, pin site abscess requiring drainage, tarsal tunnel syndrome, and contracture requiring release, docking site nonunion, and regenerate fracture), and 6 problems (contracture treated with physical therapy, pin-site infection; Table III).

DISCUSSION

The purpose of this study was to assess the safety and efficacy of limb reconstruction using distraction osteogenesis and the Ilizarov method following treatment of a range of benign and malignant bony conditions. Based on a review of 20 such cases we believe that this approach yields good to excellent functional results with a minimal rate of serious complication, albeit over the course of protracted external fixation. This conclusion builds on a well-developed literature showing successful use of this reconstruction approach in other settings.

Distraction osteogenesis has been used to effectively treat segmental bone defects in the setting of trauma or nonunions [12–15]. Originally, Ilizarov and others stabilized the limb with a circular external fixator, and the distraction site was produced by an osteotomy of the metaphysis. The original lengthening technique has been
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Problem list</th>
<th>Treatment</th>
<th>Distraction (mm)</th>
<th>Frame (days)</th>
<th>ExFix Index (days/cm)</th>
<th>Complications</th>
<th>Outcome</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Description of benign cases</td>
<td></td>
</tr>
<tr>
<td>1F 8</td>
<td></td>
<td>Ollier’s humerus</td>
<td>Humerus apex anterior 40°</td>
<td>Peds MLF</td>
<td>70</td>
<td>168</td>
<td>24</td>
<td>None</td>
<td>Recurrence of deformity after 6 years</td>
<td>ASAMI: n/a</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Humerus 70 mm short</td>
<td>Peds MLF</td>
<td>67</td>
<td>135</td>
<td>20.15</td>
<td>None</td>
<td>Full ROM</td>
<td>MSTS: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Humerus apex anterior 60°</td>
<td>Gradual correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67 mm short</td>
<td>Proximal humerus epiphysiodesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recurrence of deformity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Growth arrest</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2F 27</td>
<td></td>
<td>Giant cell</td>
<td>Failed nonvascular fibula graft</td>
<td>3 cm ulna transport for ulna-carpal fusion</td>
<td>30</td>
<td>172</td>
<td>57.33</td>
<td>None</td>
<td>Full elbow flex-ext and finger ROM</td>
<td>ASAMI: n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tumor</td>
<td>Infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stable wrist fusion with one bone forearm</td>
<td>MSTS: 73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radius</td>
<td>1.5 cm radial defect with cement spacer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3M 19</td>
<td>Unicameral bone cyst</td>
<td>11 cm LLD</td>
<td>MLF</td>
<td>90</td>
<td>246</td>
<td>27.33</td>
<td>None</td>
<td>Full ROM</td>
<td>ASAMI: n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humerus</td>
<td>Poor terminal reach</td>
<td>Gradual lengthening</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Minimal deformity</td>
<td>MSTS: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.9 cm LLD</td>
<td>Varus femur</td>
<td>MLF</td>
<td>30</td>
<td>130</td>
<td>43.3</td>
<td>None</td>
<td>Full ROM</td>
<td>ASAMI-B: E</td>
</tr>
<tr>
<td></td>
<td>5F 13</td>
<td>Unicameral bone cyst</td>
<td>Lateral ankle instability</td>
<td>Tibia/fibula osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>ASAMI-F: E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibula</td>
<td>Lateral talar shift</td>
<td>Tibia/fibula osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>MSTS: 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2 cm LLD</td>
<td>65° femoral neck shaft angle</td>
<td>Tibia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70° multi-apical deformity</td>
<td>Acute correction with MLF CEF</td>
<td>0</td>
<td>80</td>
<td>n/a</td>
<td>None</td>
<td>Full ROM</td>
<td>ASAMI-B: G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valgus deformity</td>
<td>Distal tibia osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>MSTS: 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous dysplasia</td>
<td>48° Multiapical deformity</td>
<td>Distal tibia osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>ASAMI-F: G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L. Tibia</td>
<td>20° of hyperextension at knee</td>
<td>Gradual correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fibrous dysplasia</td>
<td>12.9° LLD</td>
<td>LATN (lengthening): Tibia/fibula osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>ASAMI-B: G</td>
</tr>
<tr>
<td></td>
<td>7F 58</td>
<td>Fibrous dysplasia</td>
<td>57° tibia valgus</td>
<td>Gradual correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>MSTS: 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tibia</td>
<td>15° external rotation</td>
<td>IM Nail 8 wks later</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equinus contracture</td>
<td>Valgus deformity tibia</td>
<td>Removal LATN nail CEF</td>
<td>0</td>
<td>145</td>
<td>n/a</td>
<td>None</td>
<td>Full ROM</td>
<td>ASAMI-B: G</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Valgus deformity tibia Adduction hip contracture</td>
<td>Tibial osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No deformity</td>
<td>MSTS: 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Deficiency</td>
<td>Tibial osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gradual deformity correction Adductor tendonotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Repair of nonunion CEF</td>
<td>50</td>
<td>157</td>
<td>30.4</td>
<td>Refracture</td>
<td>Partial recurrence of deformity</td>
<td>ASAMI-F: G</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8M 10</td>
<td>7 cm LLD</td>
<td>Oblique plane deformity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MSTS: 97</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(43° procurvatum, 8° varus, 15° internal rotation)</td>
<td>Gradual deformity correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tibia/fibula</td>
<td>Plate fibula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 cm LLD</td>
<td>Tibial osteotomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tibia 13° valgus</td>
<td>Gradual correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Distal fibula nonunion</td>
<td>Hemiepiphyseodesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bilateral genu valgum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Problem list</th>
<th>Treatment</th>
<th>Distraction (mm)</th>
<th>Frame (days)</th>
<th>ExFix Index (days/cm)</th>
<th>Complications</th>
<th>Outcome</th>
<th>Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>9F</td>
<td>26</td>
<td>Maffucci syndrome</td>
<td>9.5 cm LLD</td>
<td>CEF</td>
<td>80</td>
<td>313</td>
<td>39.1</td>
<td>Knee Extension contracture; treated with quadplasty</td>
<td>Symmetrical knee ROM</td>
<td>ASAMI-B: E</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Femur</td>
<td></td>
<td>50° procurvatum, 20° varus</td>
<td></td>
<td>Distal femoral lengthening & deformity correction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 cm LLD</td>
<td></td>
</tr>
<tr>
<td>10F</td>
<td>21</td>
<td>FHMO</td>
<td>1.5 cm LLD, 25 mm lateral MAD</td>
<td>CEF, HTO</td>
<td>0, 90</td>
<td>n/a</td>
<td>None</td>
<td>Full ROM, No LLD, 0 mm MAD</td>
<td>Wrist ROM: extension 45°; flexion 10°; pronation/ supination 50% of unaffected sides</td>
<td>ASAMI-B: E, ASAMI-F: E, MSTS: 97</td>
</tr>
<tr>
<td>Tibia</td>
<td></td>
<td>FHMO</td>
<td>4 cm LLD</td>
<td>MLF</td>
<td>45, 252</td>
<td>56</td>
<td>Deficient regenerate; treated with grafting and plating at frame removal</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>11F</td>
<td>29</td>
<td>Malignant</td>
<td></td>
<td>Gradual correction of radius CEF</td>
<td>35</td>
<td>118</td>
<td>33.7</td>
<td>Ankle equinus; treated with gastroc release</td>
<td>Full ROM</td>
<td>MSTS: 70</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12F</td>
<td>35</td>
<td>Ollier's radiusulna</td>
<td></td>
<td>Tibia/fibula osteotomy LATN</td>
<td>0, 93</td>
<td>n/a</td>
<td>None</td>
<td>No LLD</td>
<td>No deformity</td>
<td>MSTS: 100</td>
</tr>
<tr>
<td>13M</td>
<td>13</td>
<td>Neurofibroma</td>
<td>Nonunon s/p allograft reconstruction</td>
<td>8 cm resection of nonunion CEF</td>
<td>80</td>
<td>467</td>
<td>58.38</td>
<td>Abscess of proximal tibia requiring I&D</td>
<td>Docking site nonunion; successfully treated with locked plate, proximal tibial/fibula synostosis, and DBM graft</td>
<td>ASAMI-B: G, ASAMI-F: E, MSTS: 87</td>
</tr>
<tr>
<td>14M</td>
<td>43</td>
<td>Lymphoma</td>
<td>Pelvis growth arrest of pelvis s/p XRT</td>
<td>55 mm medial MAD, 4 cm LLD</td>
<td>2.5 cm LLD</td>
<td>28, 120</td>
<td>n/a</td>
<td>Premature consolidation</td>
<td>5 cm LLD</td>
<td>Full ROM</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>15F</td>
<td>18</td>
<td>Osteosarcoma</td>
<td>Nonunion resection CEF</td>
<td>Double level transport MLF</td>
<td>30, 159</td>
<td>53.0</td>
<td>Pin site abscess</td>
<td>Full ROM</td>
<td>No LLD</td>
<td>ASAMI-B: E, ASAMI-F: E, MSTS: 87</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16M</td>
<td>16</td>
<td>Chondrosarcoma</td>
<td>Routine bone grafting CEF</td>
<td>Double level transport</td>
<td>40, 360</td>
<td>22.5</td>
<td>Docking site malalignment</td>
<td>MLF</td>
<td>Union</td>
<td>MSTS: 93</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Diagnosis</th>
<th>Problem list</th>
</tr>
</thead>
<tbody>
<tr>
<td>17F</td>
<td>11</td>
<td>Osteosarcoma</td>
<td>21° varus deformity</td>
</tr>
</tbody>
</table>
| | | | Femur
| | | Free fibular graft nonunion, Deformity correction, Staged distal femur lengthening | |
| | | Knee flexion contracture | |
| 18F | 18 | Paraosteal osteosarcoma | 4 cm LLD + 3 cm predicted
| | | 12 cm bone deficient s/p resection | |
| | | Femur
| | | Bone transport over nail | |
| | | IM nail failure
| | | Docking site nonunion | |
| 19M | 13 | Osteogenic sarcoma | s/p humerus resection treated with fibular graft
| | | Shoulder arthrodasis
| | | 9 cm LLD from proximal humerus growth arrest
| | | Fibular graft regenerate fracture | |
| 20M | 13 | Osteosarcoma | Infected tibial nonunion
| | | 30 mm medial MAD | |
| | | Tibia
| | | Procurvatum deformity
| | | 2.5 cm LLD following resection + 1 cm projected growth | |

Treatment

- MLF
- CEF
- ISKD
- LATN
- FHMO
- XRT
- I&D

Distraction (mm)

- 70
- 117
- 90
- 0

Frame (days)

- 187
- 283
- 386
- 130

ExFix Index (days/cm)

- 26.7
- 24.2
- 42.9
- n/a

Complications

- Free fibula graft fracture; treated with locking plate
- Repair nonunion
- Extension contracture; treated with quadplasty
- Repair of nonunion
- No LLD
- Pin site abscess; treated with I&D and exchange nailing.
- None
- No LLD
- None
- None
- No LLD

Outcome

- Full ROM
- No LLD
- Docking site nonunion
- None
- Knee ROM 0–90°
- Minimal deformity
- Regenerate graft fracture
- Return to preoperative ROM
- Knee 0–130°
- Minimal deformity
- Knee & Ankle ROM symmetrical
- No LLD

Scores

- ASAMI-B: E
- ASAMI-F: G
- MSTS: 93
- ASAMI-F: G
- MSTS: 90
- ASAMI: n/a
- MSTS: 80
- ASAMI-B: E
- ASAMI-F: E
- MSTS: 100

expanded to include bone transport allow for closure of more varied defects, including those arising from oncologic resection (Figs. 1–3). In both classic lengthening and free segment transport the osteotomy site fills with new bone while the fragments are gradually drawn apart during the process of distraction osteogenesis (Figs. 4–6). The docking site heals in compression while the patient ambulates as tolerated (Fig. 7). Subsequent histologic studies have confirmed that the bone regeneration is by way of endochondral ossification [16][17]. Despite corticotomy, healing will occur readily as long as the periosteum is maintained. In the event of difficult union a range of internal fixation can be used to stabilize the bone fragments (Fig. 8). Successful treatment of post-traumatic bone defects with the Ilizarov technique has been reported by many authors [12–15]. However, its application to bone defects seen after resections for musculoskeletal tumors has only rarely been reported [9–13][18]. Additional reports are limited to bone defects only after benign tumors [5][19][20]. Our series emphasizes the feasibility of applying the Ilizarov method to reconstructions of the large bone deficits and multiplanar deformities arising from either benign or malignant tumors with good results (Fig. 9).

Bone tumors often leads to bone defects and/or compromised epiphyseal growth potential in children either primarily or secondarily following surgical resection. This in turn can result in limb deformity, nonunion and LLD. Reconstruction options are limited for patients and are mostly directed towards deformity correction. Closing wedge corrections led to further bone loss and increased limb length discrepancy. Acute, opening wedge corrections require bone grafting with associated risks of nonunion and hardware failure in compromised bone. The Ilizarov method was employed in our patients to achieve deformity correction and/or limb length equalization. Distraction osteogenesis with gradual correction using external fixation achieved both goals successfully and simultaneously.

Table III. Adverse Events by Paley [13] Classification

<table>
<thead>
<tr>
<th>Patient</th>
<th>Event</th>
<th>Management</th>
<th>Paley class</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Premature consolidation of expanding nail lengthening site</td>
<td>External fixation</td>
<td>Complication</td>
</tr>
<tr>
<td>19</td>
<td>Partial radial nerve palsy</td>
<td>Expectant</td>
<td>Complication</td>
</tr>
<tr>
<td>8</td>
<td>Recurrent deformity</td>
<td>Hemiepiphysodesis</td>
<td>Obstacle</td>
</tr>
<tr>
<td>1</td>
<td>Recurrent deformity</td>
<td>External fixation</td>
<td>Obstacle</td>
</tr>
<tr>
<td>10</td>
<td>Deficient regenerate</td>
<td>Plating and grafting</td>
<td>Obstacle</td>
</tr>
<tr>
<td>19</td>
<td>Regenerate fracture</td>
<td>ORIF locked plate</td>
<td>Obstacle</td>
</tr>
<tr>
<td>13</td>
<td>Docking site nonunion</td>
<td>Nonunion repair with locked plate</td>
<td>Obstacle</td>
</tr>
<tr>
<td>13</td>
<td>Pin site abscess</td>
<td>I&D</td>
<td>Obstacle</td>
</tr>
<tr>
<td>9</td>
<td>Knee extension contracture</td>
<td>Quadricepsplasty</td>
<td>Obstacle</td>
</tr>
<tr>
<td>16</td>
<td>Docking site nonunion</td>
<td>Nonunion repair with plate + nail</td>
<td>Obstacle</td>
</tr>
<tr>
<td>18</td>
<td>IM nail failure</td>
<td>Exchange nailing</td>
<td>Obstacle</td>
</tr>
<tr>
<td>18</td>
<td>Knee extension contracture</td>
<td>Quadricepsplasty</td>
<td>Obstacle</td>
</tr>
<tr>
<td>18</td>
<td>Pin site abscess</td>
<td>I&D</td>
<td>Obstacle</td>
</tr>
<tr>
<td>17</td>
<td>Knee extension contracture</td>
<td>Quadricepsplasty</td>
<td>Obstacle</td>
</tr>
<tr>
<td>17</td>
<td>Regenerate fracture</td>
<td>ORIF with locked plate</td>
<td>Obstacle</td>
</tr>
<tr>
<td>15</td>
<td>Ankle flexion contracture</td>
<td>Gastrocnemius release</td>
<td>Obstacle</td>
</tr>
<tr>
<td>15</td>
<td>Tarsal tunnel syndrome</td>
<td>Tarsal tunnel release</td>
<td>Obstacle</td>
</tr>
<tr>
<td>14</td>
<td>Ankle flexion contracture</td>
<td>I&D</td>
<td>Obstacle</td>
</tr>
<tr>
<td>11</td>
<td>Ankle flexion contracture</td>
<td>Gastrocnemius release</td>
<td>Obstacle</td>
</tr>
<tr>
<td>8</td>
<td>Regenerate fracture</td>
<td>ORIF with locked plate</td>
<td>Obstacle</td>
</tr>
<tr>
<td>4</td>
<td>Knee extension contracture</td>
<td>Physical therapy</td>
<td>Problem</td>
</tr>
<tr>
<td>7</td>
<td>Pin site infection</td>
<td>Antibiotics</td>
<td>Problem</td>
</tr>
<tr>
<td>7</td>
<td>Post-removal cellulitis</td>
<td>Antibiotics</td>
<td>Problem</td>
</tr>
<tr>
<td>11</td>
<td>Pin site infection</td>
<td>Antibiotics</td>
<td>Problem</td>
</tr>
<tr>
<td>8</td>
<td>Pin site infection</td>
<td>Antibiotics</td>
<td>Problem</td>
</tr>
<tr>
<td>8</td>
<td>Knee extension contracture</td>
<td>Physical therapy</td>
<td>Problem</td>
</tr>
</tbody>
</table>

I&D, irrigation and debridement; ORIF, open reduction and internal fixation.

![Fig. 1. Care of Patient 16 (Table II). Preoperative plain radiograph showing tumor.](image)
In the era of improved chemotherapy, the disease-free survival and overall survival of patients with bone malignancies has improved significantly [21][22]. Current techniques to reconstruct bone defects arising from bone tumors involve complex surgery and carry the associated risks. Allograft reconstruction is limited by the risks of disease transmission and potential failures of the graft to incorporate. As such, it may not be the ideal solution for reconstructions in weight bearing extremities. Vascularized fibula grafting is not without disadvantages. Donor site morbidity, often involving the remaining “good” limb, is a significant concern in these patients. In addition, graft patency and viability after surgery can pose significant obstacles to obtaining good functional status. The use of hypothermic sterilization and subsequent autograft reimplantation has also been reported [3][23]. However, long-term disease-free survival following frozen autograft is difficult to predict because the largest series to date was reported at 30 months and showed approximately 55% of their patients to be disease free, 25% dead and 20% with active disease [23]. Further follow up may be needed before this technique is used more widely. Our results indicate that limb reconstruction surgery using the Ilizarov method is highly successful for bone tumors even under conditions of significant segmental bone defects after resection for malignancy.

The most common problem seen in our series was pin tract infections; however, our rates of pin tract infection was similar to that reported in previous studies [7,11,16,19,20,24–26] and not unexpected given the duration of fixation required to complete the required reconstructions. These infections are rarely a source of significant morbidity and typically amenable to oral antibiotic therapy. We found one incidence of osteomyelitis from these infections and no deep tissue infections, in addition, the end result for the patients despite a course involving a pin tract infection was overwhelming satisfactory as seen by our clinical measurements. As such, despite the extended use of external fixation, we believe the Ilizarov method carries minimal morbidity and is well tolerated by patients.

The primary limitation in our study lies in our sample size and in the retrospective data collection. Although a prospective design may have strengthened this study the relative rarity of the pathology addressed and the treatment method used make it of interest to the orthopedic and oncology community. Additionally, the generalizability
of this study is limited by the exclusion of patients receiving chemotherapy. Our series is limited to patients who were not receiving chemotherapeutic agents during reconstruction; therefore, we cannot comment on the efficacy of distraction osteogenesis in patients on concurrent chemotherapeutic agents. It is possible that bone marrow suppression and immune compromised states caused by chemotherapy will thwart bone regeneration as well as increase the rates of pin site infections. Tsuchiya evaluated the use of external fixators during concurrent chemotherapy and reported 11/17 patients with pin site infections and one case that progressed to osteomyelitis [18]. High quality studies of this patient population are difficult because of the heterogeneous soft tissue quality and chemotherapy history and previous radiation exposures any of which may adversely affect outcomes.

CONCLUSIONS

The Ilizarov method is a safe means of limb reconstruction in the setting of primary or secondary reconstruction of bone tumors. Limb lengthening, bone transport, repair of nonunion, and correction of deformity can be comprehensively accomplished with this approach. Pin tract infection was the most common complication noted, but was typically amenable to treatment with oral antibiotics. Although
the success of distraction osteogenesis during concurrent chemotherapy is not known, the Ilizarov method offers a way of reconstructing large bone defects without a prohibitive risk of complications and thus offers an attractive route to limb salvage in place of amputation.

REFERENCES

